lunes, 28 de noviembre de 2016

Probabilidades: Definiciones y Conceptos

Las Probabilidades pertenecen a la rama de la matemática que estudia ciertos experimentos llamados aleatorios, o sea regidos por el azar, en que se conocen todos los resultados posibles, pero no es posible tener certeza de cuál será en particular el resultado del experimento. Por ejemplo, experimentos aleatorios cotidianos son el lanzamiento de una moneda, el lanzamiento de un dado, extracción de una carta de un mazo de naipes. Más adelante se verá que debemos distinguir entre los conceptos de probabilidades matemáticas o clásicas de las probabilidades experimentales o estadísticas.

Probabilides, Algunas Definiciones

Espacio Muestral.- Se llama espacio muestral (E) asociado a un experimento aleatorio, el conjunto de todos los resultados posibles de dicho experimento.
Al lanzar una moneda, el espacio muestral es E = {sale cara, sale sello} ó E = {c, s}.

Al lanzar un dado de seis caras, el espacio muestral es
E = {sale 1, sale 2, sale 3, sale 4, sale 5, sale 6}
ó E = {1, 2, 3, 4, 5, 6}

Al lanzar dos monedas, el espacio muestral es
E = {(c,c), (c,s), (s,c), (s,s)}.

Al lanzar tres monedas, el espacio muestral es E = {(c,c,c), (c,c,s), (c,s,c), (c,s,s), (s,c,c), (s,c,s), (s,s,c), (s,s,s)}
Evento o Suceso. Se llama evento o suceso a todo subconjunto de un espacio muestral. Por ejemplo en el espacio muestral E = {1, 2, 3, 4, 5, 6} del lanzamiento de un dado, los siguientes son eventos:

1. Obtener un número primo A = {2, 3, 5}
2. Obtener un número primo y par B = {2}
3. Obtener un número mayor o igual a 5 C = {5, 6}
Eventos mutuamente excluyentes.- Dos eventos son mutuamente excluyentes si no pueden ocurrir en forma simultánea, esto es, si y sólo si su intersección es vacía. Por ejemplo, en el lanzamiento de un dado los eventos B = {2} y C = {5, 6} son mutuamente excluyentes por cuanto
 C = 
Eventos Complementarios.- Si A  B =  y A  B = E, se dice que A y B son eventos complementarios: Ac = B y
Bc = A
Su Medición Matemática o Clásica. Si en un experimento aleatorio todos los resultados son equiprobables (iguales probabilidades), es decir, la ocurrencia de uno es igualmente posible que la ocurrencia de cualquiera de los demás, entonces, la probabilidad de un evento A es la razón:
P(A) = número de casos favorables para A/número total de casos posibles

A partir de esta definición las probabilidades de los posibles resultados del experimento se pueden determinar a priori, es decir, sin realizar el experimento.

Se deduce de la definición lo siguiente:
 P(A)  1 La medición probabilística es un número real entre 0 y 1, inclusive, ó 0%  P(A)  100% en porcentaje.
P() = 0 y P(E) = 1
Su Medición Experimental o Estadística.- La frecuencia relativa del resultado A de un experimento es la razón
FR = número de veces que ocurre A/número de veces que se realiza el experimento

Si el experimento se repite un número grande de veces, el valor de FR se aproximará a la medición probabilística P del evento A. Por ejemplo, si lanzo 100 veces una moneda, el número de veces que obtengo cara es cercano a 50, o sea FR es cercano a 50%.

https://www.youtube.com/watch?v=yxIgwc7QUw8

Probabilidades: Definiciones y Conceptos

Las Probabilidades pertenecen a la rama de la matemática que estudia ciertos experimentos llamados aleatorios, o sea regidos por el azar, en que se conocen todos los resultados posibles, pero no es posible tener certeza de cuál será en particular el resultado del experimento. Por ejemplo, experimentos aleatorios cotidianos son el lanzamiento de una moneda, el lanzamiento de un dado, extracción de una carta de un mazo de naipes. Más adelante se verá que debemos distinguir entre los conceptos de probabilidades matemáticas o clásicas de las probabilidades experimentales o estadísticas.

Probabilides, Algunas Definiciones

Espacio Muestral.- Se llama espacio muestral (E) asociado a un experimento aleatorio, el conjunto de todos los resultados posibles de dicho experimento.
Al lanzar una moneda, el espacio muestral es E = {sale cara, sale sello} ó E = {c, s}.

Al lanzar un dado de seis caras, el espacio muestral es
E = {sale 1, sale 2, sale 3, sale 4, sale 5, sale 6}
ó E = {1, 2, 3, 4, 5, 6}

Al lanzar dos monedas, el espacio muestral es
E = {(c,c), (c,s), (s,c), (s,s)}.

Al lanzar tres monedas, el espacio muestral es E = {(c,c,c), (c,c,s), (c,s,c), (c,s,s), (s,c,c), (s,c,s), (s,s,c), (s,s,s)}
Evento o Suceso. Se llama evento o suceso a todo subconjunto de un espacio muestral. Por ejemplo en el espacio muestral E = {1, 2, 3, 4, 5, 6} del lanzamiento de un dado, los siguientes son eventos:

1. Obtener un número primo A = {2, 3, 5}
2. Obtener un número primo y par B = {2}
3. Obtener un número mayor o igual a 5 C = {5, 6}
Eventos mutuamente excluyentes.- Dos eventos son mutuamente excluyentes si no pueden ocurrir en forma simultánea, esto es, si y sólo si su intersección es vacía. Por ejemplo, en el lanzamiento de un dado los eventos B = {2} y C = {5, 6} son mutuamente excluyentes por cuanto
 C = 
Eventos Complementarios.- Si A  B =  y A  B = E, se dice que A y B son eventos complementarios: Ac = B y
Bc = A
Su Medición Matemática o Clásica. Si en un experimento aleatorio todos los resultados son equiprobables (iguales probabilidades), es decir, la ocurrencia de uno es igualmente posible que la ocurrencia de cualquiera de los demás, entonces, la probabilidad de un evento A es la razón:
P(A) = número de casos favorables para A/número total de casos posibles

A partir de esta definición las probabilidades de los posibles resultados del experimento se pueden determinar a priori, es decir, sin realizar el experimento.

Se deduce de la definición lo siguiente:
 P(A)  1 La medición probabilística es un número real entre 0 y 1, inclusive, ó 0%  P(A)  100% en porcentaje.
P() = 0 y P(E) = 1
Su Medición Experimental o Estadística.- La frecuencia relativa del resultado A de un experimento es la razón
FR = número de veces que ocurre A/número de veces que se realiza el experimento

Si el experimento se repite un número grande de veces, el valor de FR se aproximará a la medición probabilística P del evento A. Por ejemplo, si lanzo 100 veces una moneda, el número de veces que obtengo cara es cercano a 50, o sea FR es cercano a 50%.

https://www.youtube.com/watch?v=yxIgwc7QUw8
TRIGONOMÉTRIA
La trigonometría es una rama de la matemática, cuyo significado etimológico es 'la medición de los triángulos'. Deriva de los términos griegos τριγωνοϛ trigōnos 'triángulo' y μετρον metron 'medida'.1
En términos generales, la trigonometría es el estudio de las razones trigonométricas: seno, coseno; tangente, cotangente; secante y cosecante. Interviene directa o indirectamente en las demás ramas de la matemática y se aplica en todos aquellos ámbitos donde se requieren medidas de precisión. La trigonometría se aplica a otras ramas de la geometría, como es el caso del estudio de las esferas en la geometría del espacio.
Posee numerosas aplicaciones, entre las que se encuentran: las técnicas de triangulación, por ejemplo, son usadas en astronomíapara medir distancias a estrellas próximas, en la medición de distancias entre puntos geográficos, y en sistemas global de navegación por satélites.
UNIDADES ANGULARES
En la medición de ángulos y, por tanto, en trigonometría, se emplean tres unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián la más utilizada, y se define como la unidad natural para medir ángulos, el grado centesimal se desarrolló como la unidad más próxima al sistema decimal, se usa en topografía, arquitectura o en construcción.
·         Radián: unidad angular natural en trigonometría. En una circunferencia completa hay 2π radianes (algo más de 6,28).
·         Grado sexagesimal: unidad angular que divide una circunferencia en 360 grados.
·         Grado centesimal: unidad angular que divide la circunferencia en 400 grados centesimales.
·         Mil angular: unidad angular que divide la circunferencia en 6400 unidades.

Transportador en grados sexagesimales
Transportador en grados centesimales



 
TRANSPORTADOR MIL ANGULAR
FUNCIONES TRIGONOMÉTRICAS
La trigonometría es una rama importante de las matemáticas dedicada al estudio de la relación entre los lados y ángulos de un triángulo rectángulo y una circunferencia. Con este propósito se definieron una serie de funciones, las que han sobrepasado su fin original para convertirse en elementos matemáticos estudiados en sí mismos y con aplicaciones en los campos más diversos.
Razones trigonométricas

El triángulo ABC es un triángulo rectángulo en C; lo usaremos para definir las razones seno, coseno y tangente, del ángulo a, correspondiente al vértice A, situado en el centro de la circunferencia.
·         El seno (abreviado como sen, o sin por llamarse "sĭnus" en latín) es la razón entre el cateto opuesto sobre la hipotenusa.

·        El coseno (abreviado como cos) es la razón entre el cateto adyacente sobre la hipotenusa.

·         La tangente (abreviado como tan o tg) es la razón entre el cateto opuesto sobre el cateto adyacente.

Representación gráfica

Representación de las funciones trigonométricas en el plano cartesiano (x,y), los valores en el eje x expresados en radianes.
Razones trigonométricas inversas
Artículo principal: Inverso multiplicativo
·         La cosecante: (abreviado como csc o cosec) es la razón inversa de seno, o también su inverso multiplicativo
·       La secante: (abreviado como sec) es la razón inversa de coseno, o también su inverso multiplicativo

{\displaystyle \sec \alpha ={\overline {AE}}}·         La Cotangente: (abreviado como cot o cta o ctg) es la razón inversa de la tangente, o también su inverso multiplicativo:

{\displaystyle \cot \alpha ={\overline {FG}}}Normalmente se emplean las relaciones trigonométricas seno, coseno y tangente, y salvo que haya un interés específico en hablar de ellos o las expresiones matemáticas se simplifiquen mucho, los términos cosecante, secante y cotangente no suelen utilizarse
Representación gráfica
Representación de las funciones trigonométricas inversas en el plano cartesiano (x,y), los valores en el eje x expresados en radianes.

https://www.youtube.com/watch?v=lR-LAIyPsh0

TRIGONOMÉTRIA
La trigonometría es una rama de la matemática, cuyo significado etimológico es 'la medición de los triángulos'. Deriva de los términos griegos τριγωνοϛ trigōnos 'triángulo' y μετρον metron 'medida'.1
En términos generales, la trigonometría es el estudio de las razones trigonométricas: seno, coseno; tangente, cotangente; secante y cosecante. Interviene directa o indirectamente en las demás ramas de la matemática y se aplica en todos aquellos ámbitos donde se requieren medidas de precisión. La trigonometría se aplica a otras ramas de la geometría, como es el caso del estudio de las esferas en la geometría del espacio.
Posee numerosas aplicaciones, entre las que se encuentran: las técnicas de triangulación, por ejemplo, son usadas en astronomíapara medir distancias a estrellas próximas, en la medición de distancias entre puntos geográficos, y en sistemas global de navegación por satélites.
UNIDADES ANGULARES
En la medición de ángulos y, por tanto, en trigonometría, se emplean tres unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián la más utilizada, y se define como la unidad natural para medir ángulos, el grado centesimal se desarrolló como la unidad más próxima al sistema decimal, se usa en topografía, arquitectura o en construcción.
·         Radián: unidad angular natural en trigonometría. En una circunferencia completa hay 2π radianes (algo más de 6,28).
·         Grado sexagesimal: unidad angular que divide una circunferencia en 360 grados.
·         Grado centesimal: unidad angular que divide la circunferencia en 400 grados centesimales.
·         Mil angular: unidad angular que divide la circunferencia en 6400 unidades.

Transportador en grados sexagesimales
Transportador en grados centesimales



 
TRANSPORTADOR MIL ANGULAR
FUNCIONES TRIGONOMÉTRICAS
La trigonometría es una rama importante de las matemáticas dedicada al estudio de la relación entre los lados y ángulos de un triángulo rectángulo y una circunferencia. Con este propósito se definieron una serie de funciones, las que han sobrepasado su fin original para convertirse en elementos matemáticos estudiados en sí mismos y con aplicaciones en los campos más diversos.
Razones trigonométricas

El triángulo ABC es un triángulo rectángulo en C; lo usaremos para definir las razones seno, coseno y tangente, del ángulo a, correspondiente al vértice A, situado en el centro de la circunferencia.
·         El seno (abreviado como sen, o sin por llamarse "sĭnus" en latín) es la razón entre el cateto opuesto sobre la hipotenusa.

·        El coseno (abreviado como cos) es la razón entre el cateto adyacente sobre la hipotenusa.

·         La tangente (abreviado como tan o tg) es la razón entre el cateto opuesto sobre el cateto adyacente.

Representación gráfica

Representación de las funciones trigonométricas en el plano cartesiano (x,y), los valores en el eje x expresados en radianes.
Razones trigonométricas inversas
Artículo principal: Inverso multiplicativo
·         La cosecante: (abreviado como csc o cosec) es la razón inversa de seno, o también su inverso multiplicativo
·       La secante: (abreviado como sec) es la razón inversa de coseno, o también su inverso multiplicativo

{\displaystyle \sec \alpha ={\overline {AE}}}·         La Cotangente: (abreviado como cot o cta o ctg) es la razón inversa de la tangente, o también su inverso multiplicativo:

{\displaystyle \cot \alpha ={\overline {FG}}}Normalmente se emplean las relaciones trigonométricas seno, coseno y tangente, y salvo que haya un interés específico en hablar de ellos o las expresiones matemáticas se simplifiquen mucho, los términos cosecante, secante y cotangente no suelen utilizarse
Representación gráfica
Representación de las funciones trigonométricas inversas en el plano cartesiano (x,y), los valores en el eje x expresados en radianes.

https://www.youtube.com/watch?v=lR-LAIyPsh0